
AD-AL09 551 NAVAL POSTBRADUATE SCHOOL MONTEREY CA F/0 9/2

LASIF'.MEASURING CONTROL STRUCTURE COMPLEXITY THROUGH EXECUTION SEOUMEN-ETCIU)

UNCLASSIFIED NPS81-015 L

E-E7~hEE

111l11 1 .0 ' , 2.8 I III

1111 .2 III 25IA t.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL URIAL) (IFAU U !A A

NS28-015 2
NAVAL POSTGRADUATE SCHOOL

Monterey, California

1@i A32'

M~easuri ng Control Structure Complexity
Through Execution Sequence Grammnars

Bruce J. MacLennan

November 1981

rA Approved for public release; distribution unlimited

Prepared for:

Naval Postgraduate School
Monterey, CA 93940

92 01 1? (047

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral J. J. Ekelund D. A. Schrady
Superintendent Acting Provost

The work reported herein was supported by the Foundation Research Program
of the Naval Postgraduate School with funds provided by the Chief of Naval
Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

BRUCE J. LNA

.1 Computer Science

Reviewed by:

ROO . , n WILLIAM M. TOLLES
Department of r Science Dean of Research

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When~ Dole Entrd)

REPORT DCMNAINPAGE READ INSTRUCTIONS
DOCUMETATIONBEFORE COMSPLETWING FORM

I REPRT NU1112. GOVT ACCESSION NO. I RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE Of REPORT & PERIoO COVEREC

Measuring Control Structure Complexity
Through Execution Sequence Grammnars Technical Report

6. PERFORMING ORO. FREPOR NUMBER

7. AuTHO"(.) 11.- CONTRACT OR GRANT NUMUER(.)

Bruce J. MacLennan

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

Naval Postgraduate School
Monterey, CA 93940

II, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Postgraduate School November 1981
Monterey, CA 93940 13. NUMBER OF PAGES

29
14. MONITORING AGENCY NAME &AODRESS(il differn.t trm Controlling Office) 15. SECURITY CLASS. (of this reprt)

Unclassified
ISm. DECLASSIFICATION/OWNGRAOING

SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. OISrRISUTION STATEMENT (of the abstract entered Ire Block 20. it different intu Ret)

IS. SUPPLEMENTARY NOTES

19. Kay WORDS (Contine an reeycee side It necessary a" ientify by block nanber)

control structures, programmning language metrics, complexity measures,
software metrics.

20. A61PACT (Centime. antS vers siof neesar anE IEantifr by block nmbe)

A method for measuring the complexity of control structures is presented.
It is based on the size of a grammlar describing the possible execution se-
quences of the control structure. This method is applied to a number of con-
trol structures, including Pascal's control structures, Dljkstra's operators,
and a structure recently proposed by Parnas. The verification of complexity
measures is briefly discussed.

DO IF2:73 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED
S/N010-04-601SECURITY CLASSIFICATION OF TNIS PAGE (ohmR Da70 W6e60

Ac1s io ca in For

THROUGH
EXECUTION

SEQUENCE
GRAMMARS*

. .

B. J. MacLennan

Naval Postgraduate School
Di t-.'

Monterey, CA 93940

1. Abstract

A method for measuring the complexity of control structures

is presented. It is based on the size of a grammar describing the

possible execution sequences of the control structure. This

method is applied to a number of control structures, including

Pascal's control structures, Dijkstra's operators, and a struc-

ture recently proposed by Parnas. The verification of complexity

measures is briefly discussed.

2. Introduction

Many questions face a language designer. Is a "while-do"

better than a "repeat-until"? Is a "do-od" more complex than

these? How does a "if-elsif-else" structure compare with nested

"if-then-else"s? To this end it is useful to have a complexity

measure for control structures that can serve as a figure of

merit in making these determinations.

* The work reported herein was supported by the Foundation

Research Program of the Naval Postgraduate School with funds

provided by the Chief of Naval Research.

-2-

In this paper we take the view that the complexity of a con-

trol structure Is related to the complexity of the corresponding

language of execution sequences. The complexity of this languaqe

can then be measured by determining the structural complexity of

the corresponding grammar using techniques described in (4). The

motivation for this technique is the assumption that to under-

stand a control structure a programmer must internalize the pos-

* sible control sequences defined by that control structure. A

further assumption is that the difficulty of doing this is

* I approximated by the size of a grammar describing this class of

execution sequences.

In the next section we informally present this technique by

measuring the size of a conventional extended-BNF grammar for the

language of execution sequences. The measurements depend on

details of the concrete BNF notation that do not seem to be

relevant to the control structure's complexity. Therefore, in

the following section these measurement techniques are refined by

measuring an abstract' grammar for the language; this eliminates

irrelevant details of the concrete syntactic notation. Finally,

we tabulate the complexity of a number of common control struc-

tures and discuss some limitations of the method.

1. By this we mean a grammar expressed In an abstract rather
than a concrete form, not a grammar for an abstract language
as opposed to a concrete language.

-3-

3. Concrete Grammar Size

3.1 Conditionals

We will begin our analysis with a simple control structure,

the Pascal if-then statement. Consider an if-then such as this:

if B then S

and consider the possible execution sequences. These execution

sequences can be written as reqular expression, which use the

operations catenation, union, Kleene cross, and Kleene star.

Note that B will always be executed, but S will be executed only

if B was true. Therefore the possible execution sequences are BS

and B, depending on whether B was true or not (we represent con-

secutive execution by catenation). Hence, the set of possible

execution sequences is

Etif B then S1 BS + B

where '+' represents the union of sets of execution sequences.

If we then define the complexity C(X} of a construct to be the

size of the execution sequence grammar of X,

C{X) = I!EX)l

then we can compute the complexity of the if-then. To measure

the complexity of an execution sequence grammar we will take a

very naive, concrete view, and count the tokens in the grammar.

Thus,

,' ,..

Clif B then S) IBS + BI 4

since the tokens are 'B', IS', '+1, and '8'.

Next we will consider the full if-then-else:

if B then S else T

7 In this case it can be seen that B is always executed, followed

by either S or T. Thus the possible execution sequences are BS

and BT, which we can factor and write B(S + T). The assumption

here is that the complexity is related to the shortest grammar

for the language of execution sequences. Thus the complexity of

the if-then-else is:

I C[if B then S else T) IB(S+T)I = 6

It is a little more complex than the simple if-then, as is

expected.

Finally, we will analyze the case-statement:

case E of ($l; S2 ; ..•; Sn)

Clearly, E must be executed first, and then one of the Si. The

complexity is easy to calculate:

IE(SI+S 2+ -•• +Sn)I l 2n+2

where n is the number of cases.

5

3.2 Iterative Constructs

Next we will analyze the Pascal repeat-until statement.

Consider a repeat-until such as this:

repeat S until B

The effect of this is to execute S until B evaluates to true.

Therefore, we execute S and then B. If B is false, we again exe-

cute S and B. This process continues until B becomes true (which

must eventually happen in a terminating program). Therefore the

possible execution sequences can be written

SB + SBSB + SBSBSB +

where concatentation denotes sequential execution and '+' can be

read as "or". Really, the '+' denotes set union, since the above

expression defines the set of possible execution sequences.

Using exponential notation, the execution sequences for the

repeat-until can be abbreviated:

SB + (SB)2 + (SB)3 +.

Using the Kleene cross notation, this infinite union can be writ-

ten

(SB)+

and can be read one or more repetitions of the sequence SB. This

agrees with the way we think of the behavior of a repeat-until.

The complexity of this construct is measured simply:

-6-

C(repeat S until B - I(SB)+I * 5

Very much the same analysis can be applied to Pascal's

while-do:

while B do S

This construct executes B; if the result is false it terminates,

otherwise it executes S and loops back to test B again. There-

fore we can write the execution sequences

B + BSB + BSBSB + BSBSBSB +

That is,

B + B(SB)1 + B(SB) 2 + B(SB) 3 +

Now, if we use G to represent the null execution sequence, then B

can be factored out of the above expression:

BI G + (SB)i + (SB)2 + (SB)3 + ... I

This can be simplified with Kleene's cross:

B[G + (SB)+ I

It now becomes apparent that this can be simplified even further

by using the Kleene star notation, since

t*

C = + C+

Thus, we can compute the complexity of the while-do:

C(while B do S1 = IB(SB)*I - 6

-7-

Notice that the while-do is slightly more complex than the

repeat-until because of the leading inital test of the condition.

It would probably be more intuitive to ignore the final failure

test of B and analyze the while-do as:

Cfwhile B do S) = l(BS)*I - 5

which agrees with our intuitive notion that a while-do and

repeat-until have about the same complexity. It is not known at

this time which measurement technique is correct.

Since we have considered leading-decision loops and

trailing-decision loops, we will next analyze mid-decision loops.

A mid-decision loop has the form:

loop S exit when B; T end loop

The meaning of this is: execute S, then test B, If B is true

terminate the iteration, otherwise execute T and continue loop-

ing. Mid-decision loops are often useful in search operations.

It is easy to see that the execution sequences are:

SB + SRTSB + SBTSBTSB +

or in general,

SB (TSB)

The resulting complexity is

Cfloop S exit when B; T end loop) - ISB(TSB)*l -

As would be expected, this is more complex than either the lead-

Ing or trailing decision loops.

So far we have described execution sequences using just the

operators used in regular expressions (viz., Kleene cross, Kleene

star, union, and catenation). Recently, however, several

extended BNP notations (see, for example, [2, 3, 5, 8D have

adopted an operator that expresses a very common configuration,

the delimited sequence. An example is "a sequence of names

separated by commas." Usinq the regular expression operators,

this would have to be written

<name> (, <name>)

which requires repeating <name>. The delimited sequence notation

allows this to be expressed directly:

<name> ,

In general, 'CD...' means the class of all non-empty sequences of
*I

Cs alternating with Ds; that is, C(DC) . Using this notation,

which expresses a very simple structural idea, the leading-

decision and mid-decision loops have the complexity:

Cfwhile B do S) IBS... 1 3

C{loop S exit when B; T end loop) I(SB)T...? 1 5

This may seem like an ad hoc definition of an operator to sim-

plify the description of these execution sequences. For this

reason we have restricted our attention to notations that have

- .-.---.----.---- -1

-9-

already proved useful in describing sets of sequences. As we

have said, the delimited sequence operator has been independently

*proposed by several authors as embodying a useful configuration.

Whether it should be used in measuring control structure complex-

ity remains an open question.

3.3 Dijkstra's Constructs

In this section we analyze Dijkstra's if-fi and do-od con-

trol structures [1]. The if-fi has this form:

If B1 -S 1 0 C. Bn--'Sn f i

The guards B1, ..., Bn are evaluated non-determinrstically. If

one or more evaluates to true, then one of the corresponding

statements Si is chosen and executed. If none of the guards is

true, then an error condition exists and the program aborts.

Thus, the possible execution sequences are:

B1 S 1 + B2S 2 + ... + BnS n

The size of this expression is 3n-l, so the complexity of the

if-fi is:

C~t._f... ai->Si ... fi} 3n-1

The do-od is an iterative construct patterned on the if-fi.

It has the form:

do Bl--S 1 . 03 Bn'-Sn od

On each iteration the guards are evaluated non-deterministically.

- 10 -

If none of them are true, the loop terminates. Otherwise one of

the corresponding Si is selected, and the loop repeats. It is

easy to see that the execution sequences are

(BIS 1 + --- + 8 nSn)

Therefore the complexity of the do-od is:

Cfdo ... Bi-),Si ... ad) - 3n+2

which is approximately the same as the if-fl.

It is instructive to compare the complexity of the if-fi

(3n-1) with that of the more conventional if-elsif-else (or

multi-branch conditional). Effectively, we are comparing the

complexities of non-deterministic and deterministic conditionals.

The if-elsif-else has the form:

if B1 then S1 elsif 8 2 then S2 ... else E endif

This is executed strictly sequentially; if 81 is false, then 82

is tried, if S2 is false, then 83 is tried, and so forth. This

is equivalent to nested if-then-else statements. It is easy to

write down the execution sequences:

B1S1 + 8 1B 2S 2 +1 8 2 "BnE

The length of this regular expression is

- 1 n2+3n
2 + 3 + ... + (n+l) - (i+1) 2

This is not the complexity, however, since this regular

Ii -

- 11 -

expression can he simplified by factoring to

l(S 1 + B 2 (S2 + n(S n + E) ...

we can find the length of this expression inductively. Let

Ei B i (Si+Ei+ I)

for i~n, and En+1 - E. Then,

IEi = 5 + IEi+ l l

and tEn+ll = 1. Therefore IEI = 5n+l. In summary, the complex-

ity of the n-branch if-elsif-else is

Cfif -.. elsif Bi then Si .-. else E endif} = 5n+l

Thus, the complexity of the non-deterministic if-fi, 3n-l, is

considerably less than that of the deterministic if-elsif-else,

5n+l.

4. Abstract Grammar Size

4.1 Introduction

The reader will have probably noticed that our complexity

measurements include aspects of the regular expression notation,

such as parentheses, that on an intuitive basis are not very

relevant. Previous work (4, 6] has shown that better measure-

ments are obtained if an abstract form of the grammar is meas-

ured, rather than some concrete representation, such as we have

used in the first section. This approach will count operators

- 12-

that alter the sets of execution sequences, such as '+', '*', and

catenation, while iqnoring those that do nothing, such as

parentheses. Previous work has also shown that it is best to

count multi-armed alternations as a single operator, rather than

several. That is, an expression such as

S 1 + $2 + ".. + Sn

(which would normally be counted as 2n-l) will be analyzed as

though it were written

!Is 1 , S2 , ... I s n]

which gives it a count of n+l (n for the Si and 1 for the 7).

Since we are counting the operators that "do something" we will

now have to also count catenation, so we will write ST explicitly

as S'T

4.2 Recomputation of Complexities

In this section we will recompute the complexities of the

constructs analyzed using concrete grammars. The Pascal control

structures are trivial:

Cfif B then S) IBS+BI 5

C if B then S else T) IB"(S+T)I 5

Cfwhile B do S) ("S)*I 4

Cfrepeat S until BI I(SB)+ 4

C{loOp S exitwhen B; T end loop) I(S'B)T...I 5

c~case E (... S i . . . } IE' [... Si . . .] n+3

13 -

The results of these measurements are not very different from

those based on the concrete grammar.

Next we will consider Dijkstra's constructs, which will make

use of the T operator. The if-fi is analyzed

C(if ... Bi--Si -.. fi - 1: ... , B iS i , -- i - 3n+l

The result is almost the same as with the concrete grammar; the

addition of the catenation operations has compensated for the

omitted unions (+).

The do-od construct is exactly analogous:

i*

Cfdo -.. B--S t ... od} - ... , Bi'Si, ---]*1 - 3n+2

The execution sequences of the if-elsif-else are:

B1 " (Sl+B2 " (S2 + ... Bn ' (S n +A) ...))

In this case the inductive equation is

Ei Bi*(S,+Ei+ 1)

Therefore each clause adds 4, resulting in a total complexity:

C(if-elsif-else} 4n+l

This is a significantly lower measurement than that obtained with

the concrete grammar (5n+l), largely owing to the abstract

grammar's insensitivity to parentheses.

-14 -

5. The Parnas It-Ti Construct

5.1 The Mon-Deterministic It-Ti

In this section we analyze the complexity of a new control

structure proposed by Parnas (7]. This control structure is a

combination of Dijkstra's if-fi and do-od structures and has the

form:

ita--*SlX V ... V Bn.-SnXn t

The X1 'is either an up-arrow indicating continuation of the

iteration or a down-arrow indicating termination of the itera-

tion. The semantics of the it-ti is as follows: The guards are

evaluated non-deterministically. Out of the ones that evaluate

to true, one is chosen and its corresponding statement Si is exe-

cuted. When this statement has completed the continuation Xi is

considered. If it is repeat (an up-arrow) then the it-ti loops

again; if it is break (a down-arrow) then the it-ti terminates.

Since the it-ti described above is non-deterministic, the

order of its arms can be changed without altering its meaning.

This simplifies the analysis of the it-ti because the repeating

arms and the breaking arms can he grouped together. We will

assume that there are m repeating arms, and that they are moved

to the front of the it-ti. The complexity is then easy to calcu-

late:

- 15 -

C(it Bl-*Slrepeat V V Bm,--Smrepeat

V Bm+i--Sm+ibreak V V Bn-->Snbreak til

- BM+lM+l, Bn-Sn]

- 3m+2 + 3(n-m)+l

- 3n + 3

Thus the complexity is comparable to that of the if-fi and do-od.

5.2 The Deterministic It-Ti

In this section we analyze a variant of the it-ti defined by

Parnas called the deterministic it-ti. This has the form

it aI--S1 X1 else or -.. else or Bn--SnXn ti

In this construct the guards are executed strictly sequentially.

In other words, if B, is true, then S1 is executed and continua-

tion action X1 is taken; otherwise testing continues with B2. As

for the non-deterministic it-ti, an error condition exists if

none of the guards is true.

The analysis of the deterministic it-ti is considerably more

complicated than the non-deterministic since the arms cannot be

rearranged to group the repeating and breaking arms together. In

fact, each different arrangement of breaks and repeats (i.e., of

the Xi) effectively defines a different control structure. To

:4 keep the mathematics tractable we introduce several abbrevia-

tions. The notation

E<xlx 2.• Xn>

'a p

- 16 -

represents the execution sequences of a deterministic it-ti whose

i-th continuation action is xi . We will use 'b' to represent

'break', 'r' to represent 'repeat', 'Xe to represent either 9b'

or 'r', 'X' to represent a sequence of either 'b's or 'r's, and

'B' to represent a sequence of 'b's. These notations will just

be used inside the angle brackets of E<...>.

We will also make one change to the semantics of the deter-

* j ministic it-ti to simplify the analysis. If none of the guards

are true, we will assume that the it-ti "falls through" like a

do-od. Later we will correct the formula to account for the fact

that this is an error condition in Parnas' formulation.

The formula will be derived by an inductive process starting

with the degenerate it-ti that contains no arms, viz., it ti.

This is a fall-through, and the corresponding execution sequence

is the null sequence, so

E<> - G

We will next investigate extensions of an it-ti formed by adding

a new arm to the beginning. The formulas for the execution

sequences are derived by a variant of the method of undetermined

coefficients suggested by R.W. Hamming. In this method, the gen-

eral form of a formula is assumed and its specific coefficients

or parts are derived. Deterministic it-ti's are of two sorts:

those that contain only 'break's (and are hence multi-branch con-

ditionals), and those which contain at least one 'repeat'. The

latter we will assume have an execution sequence of the form

4 4 4

- 17 -

L *T + U, for some regular expressions L, T, and U. First, how-

ever, we will address it-tis with only 'break's.

Consider an it-ti of the form bB, i.e., all of whose arms

are lbreak's. We want to calculate the execution sequences

E<bB>. Suppose the arm corresponding to the b is C--S, then the

possible execution sequences of bB are C'S or C*E, where E

is the set of execution sequences of the reduced it-ti B. This

*I can be factored giving,

' IE<bB> - C' (S + E)

Next consider an it-ti of the form rB, i.e., a repeating arm

followed by all breaking arms. Suppose the repeating arm is

C-*S. Then, if C is true, S will be executed and the it-ti will

repeat. Otherwise the it-ti B is executed (which is just a

multi-branch conditional). Therefore the possible execution

sequences are

E<rB> (C'S)*'C'E

Next we will consider extensions of an it-ti containing at

least one repeat, X. Thus we will derive E<xX> from E<X>. By

the method of undetermined coefficients, we will assume E<X> to

have the form L**T + U (since by assumption it contains a loop).

Consider first the case of adding a breaking arm C-S; we

wish to calculate E<bX>. The effect of this it-ti is to evaluate

C; if it's true then evaluate S and break; otherwise continue

with the execution of X. Therefore the execution sequences are

~- 18 -

E<bX> (C*L)**T + C"(S+U)

This can be seen to have the form L*,T+U.

Next we will consider the case of adding a repeating arm

C--+S; we wish to calculate E<rX>. The effect of this it-ti is to

evaluate C; if it's true then evaluate S and repeat; otherwise

continue with the execution of X. Therefore the execution

sequences are

E<rX> - [C'S+L)]*'T + C'U

Again, this has the form L**T+U. &4 our use of the method of

undetermined coefficients has been successful.

It is now a routine matter to calculate the complexity of

these regular expressions.

IE<>I = 0

IE<bB> = IE! + 4

IE<rB> = IEI + 7

IE<bX> ILl + ITI + lUI + 9 - IE<X>l + 6

IE<rX>l ILl + ITI + 1UI + 9 = IE<X>I + 6

The last two equations follow from the fact that

IE<X>I * ILl + ITI + IUI + 3

.4*

since E<X> =L T + U.

These equations can now be solved for the complexity. Con-

sider first the case of an it-ti all of whose arms are breaks,

- 19 -

C(B) - IEI. You can see from the equations above that each

arm adds 4 to the complexity. Therefore, if there are m breaks

blb 2 -.-bm , the complexity is

Cbl... bm -4m

Next consider an it-ti with one repeat followed by m breaks.

This has the form rbl...bm. The complexity is

Cfrbl...bm) Cfbi...bml+7 - 4m+7

Pinally, we have the case of adding either a break or a

repeat to an it-ti that already contains a mixture of breaks and

repeats. Regardless of whether the new arm is a break or repeat,

it adds 6 to the complexity. Therefore, if k arms are added the

complexity is increased by 6k:

C{Xl... xkrbl...bm} - 6k + 4m + 7

It is already apparent that the deterministic it-ti is a complex

control structure since there is a factor of 6 involved.

To be able to compare the it-ti with other control struc-

tures it is useful to have its complexity in terms of n, the

number of arms. Note that n - k+m+l if there is at least one

repeat, otherwise n - m. Therefore If there are no repeats we

have

C(B) - 4n

If there is at least one repeat we have

......

- 20 -

C(X) - 6k+4m+7 - 4(k+m+l) + 2k + 3 = 4n + 2k + 3

This is still not a very convenient form, since k is one less

than the number of arms that aren't terminal breaks, a rather

unintuitive quantity. It is more convenient to express the com-

plexity either in terms of m, the number of terminal breaks, or

in terms of s-n-m, the number of arms that aren't terminal

breaks:

C(X) - 6n-2m+l = 4n+2s+l

Since m can vary from n to 0 it's easy to see that the complexity

of the deterministic it-ti can vary from 4n to Sn+l. All of

these are considerably more complex than the non-deterministic

it-ti's 3n+3.

To account for the fact that Parnas' it-ti aborts if none of

the guards are satisfied, it is merely necessary to add an addi-

tional breaking arm to the end of the form 'true-4abort break'.

This increases the complexity to gn-2m+5 (or 4n+2s+5).

Notice that the deterministic it-ti is the first construct

we have encountered whose complexity depends on another parameter

besides n, the number of arms. This reflects the fact that the

deterministic it-ti is in fact a family of control structures,

since each different arrangement of repeats and breaks defines a

different pattern of control flow.

t .'. ...,. ., '- " '

- 21 -

6. Conclusions

The complexities calculated for the various control struc-

tures are summarized in the following table. This table also

show the complexity per arm to facilitate comparisons between

structures with a fixed number of arms (e.g., the if-then-else)

and those with a variable number of arms.

control structure complexity per arm

if-then 5 5
if-then-else 5 2.5
while-do 4 4
repeat-until 4 4
mid-decision loop 5 2.5
case n+3 1+
multi-branch if 4n+l 4+
if-fi 3n-l 3-
do-od 3n+2 3+
non-deterministic it-ti 3n+3 3+
deterministic it-ti 6n-2m+5 4 - 6

Figure 1. Control Structure Complexities

The complexities are also shown graphically in the following fig-

ure. These measures seem to agree with our intuitive estimations

of the relative complexity of these control structures.

Whenever a measure such as this is proposed the question of

its validation must be asked. In other words, is this the

correct complexity measure? Complexity is used in many senses.

Perhaps the most common uses relate to the difficulty of under-

standing. That is, one thing is more complex than another if it

is more difficult to understand. The implication seems to be

that complexity is a psychological property that requires psycho-

logical techniques in its verification. However, this is not the

case.

- 22 -

50"

4JAI

20-

Figure 2. Complexities of Various Control Structures

An analogy may help to clarify the issues. When we hold an

object in our hands we experience a psychological property, a

sensation of weight. This property depends on many cir-

cumstances, including the shape of the object, how long it's

held, and so forth. Similarly, our sensation of time can be

quite subjective and can depend on many circumstances. Psycho-

logical weight and psychological duration are valid objects of

scientific inquiry and in fact have been studied by psycholo-

gists. These properties are analogous to psychological complex-

ity, the perceived complexity of a system.

Although our first notions of time were based on psychologi-

cal duration and our first notions of weight on psychological

weight, these are not the only notions of time and weight that we

now use. Physicists have discovered notions of time and weight

that are objective, i.e., that are independent of individual

-23-

psychologies. Time is measured by clocks even thouqh we realize

that there is often only a loose correlation between clock time

and psychological time. Similarly, the concepts weight and mass

are defined and measured in completely non-psychological terms.

The measurement of physical duration and physical weight is a

problem of physics; the measurement of psychological duration or

weight is a problem of psychology, as is the establishment of the

relation between the physical and psychological properties.

Physicists have studied the physical properties rather than

the psychological properties because they have found the physical

properties to be more easily reproduced in experiments. That

they can be measured objectively is certainly sionificant, since

it eliminates a dependence on a very imperfectly understood

entity, human psychology. Even more importantly however, the

physical properties have been found to be part of a highly

integrated system of laws and principles that have been very pro-

ductive in understanding the world. In other words, these physi-

cal properties have great practical value.

How does this apply to complexity measures? we can of

course try to understand the phenomenon of psychological complex-

ity; this is a fruitful area of research for psychologists. Our

4 analogy suggests, however, that there is another useful notion of

complexity, that there may be a non-psychological measure of cam-

plexity. This paper has presented one such measure. Whether it

turns out to be the "right" measure or not will depend largely on

whether it can be integrated into a comprehensive, practical

- 24

theory. Such an integration should also resolve some of the

measurement ambiguities, such as how the delimited sequence

operator should be counted in measurements. In the meantime it

must remain as one possible notion of complexity. We should not

be suprised at this state of affairs; It took many years for phy-

sicists to settle on definitions of work, force, mass, etc.

7. References

(1] Dijkstra, E.W., A Discipline of Programming, Prentice-Hall,

1976.

(2] MacLennan, 8.3., Semantic and Syntactic Specification and

Extension of Languages, Purdue University PhD Dissertation,

December 1975.

(31 MacLennan, B.J., Prototype Linear Argot System Users'

Manual, June 1978, available from author.

[4] MacLennan, B.J., The Structural Analysis of ProorammirA

Languages, Naval Postgraduate School Computer Science

Department Technical Report NPS52-81-009, September 1981.

[5] MacLennan, B.J., The Automatic Generation of Syntax

Directed Editors, Naval Postgraduate School Computer Sci-

ence Department Technical Report NPS52-81-014, October

1981.

(6] MacLennan, B.J., An Investigation of System Complexity,

Naval Postgraduate School Computer Science Department

-25-

Technical Report MPSS2-el-O1O.

[71 Parnas, D.L. An hiternative Control Structure and Its For-

mal Definition, unpublished, 1981.

[8) Wulf, W.A., et al. (Preliminary) A n Informal Definition of

Aiphard, Carnegie-Mellon University Computer Science

Department technical report, November 29, 1977.

-26

INITIAL DISTRIBUTION LIST

No. copies

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

Dudley Knox Library2
Code 0142
Naval Postgraduate School
Monterey, CA 93940IOffice of Research AdministrationI
Code 012A
Naval Postgraduate School
Monterey, CA 93940

Chairman, Code 52Bz 40
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

Professor Bruce J. MacLennan, Code 52MI 12
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

